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ERRATA

In Table II,

Instead of b ..31 read b2HG 31 2'2
2HG

b rea b a-41 2HG 1 read 2

.23 read b23 -

b24 "G' read b2 -- ...
b 23

34 2 " read b 33 G2.
2HG 2

In Table IIi.

instead of a3 G- read a'3 --_G- .

In Table IV,

instead of b' 
-edb .23 G read b 2 Z0;

-3- read b - 3~

b y -

2HG2  , read b' --- --- .

b3 2G2 2HG 2

34 2HGr " read ' -- .

34 2HGr

In Table VI,

instead of b2 V -3 t read b" - V

23 GV G 23 G

24 V

33 2 --- read b' . V
2HG - 2G 2

I.
b ' 1

34 2~r rad S



Classically the variational equations for the problem cf two bodies

have been studied in Jacobi's elliptic elements or Delainay's canonical

variables which make them trivial co solve. This drastic simplification

is achieved by successive canonical transformations. Only recently astron-

omers considered using rectangular coordinates in rerturbation Theory,

which led them to compute the partial derivatives of the coordinates along

a Keplerian motion with respect to Jacobi's elliptic cletents (Eckert and

Brouwer 1937, Brouwer and Clc.mence 1961). From the Eckert-Brouwer formula

for differential corrections cf Cartesian coordinates, Danby (1.965) de-

rived a decomposition of the matrizant R(t;t 0 ) into the matrix product

R(t;t O) = M(t) o M-l(t0 ): tie matrix M(t) is surprisingly simple in ap-

pearance, but no explicit analytical expression is given for its inverse.

Similar to the Eckert-Bronwer formula is Bower's approach to the con-

struction of the matrizant, (Bower 1932). It proceeds in two steps: the

variations of the elliptical elementa with respect to the initial conditions

are first computed, then the variations of the coordinates with respect to

the elliptical elements. The algorithm is left in the form of a sequence

of operations to be carried on a desk calculator to arrive at the value of

the matrizant at a given instant. Following Bower's method, Danby (19b2,1965)

derived explicit expressions for the elements of the matrizant in thie apsidal

frame of reference (the axis Oz is normal to the orbital plane, while Ox

points toward the periastron ). Such formulas had already been produced by

Myachin (1959) apparently without much explanation as to how he obtained them.

The matrizant in the apsidal coordinate system looks slightly simpler when

the initial time t0 is taken at a Passage at periastron (Danby 1964).
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Starting from the series f and g, Sconzo (1963) arrives at a

completely explicit expression of the matrizant but, in view of the forms

we have given to it, it is felt that Sconzo's formulas could be presented

in a more direct and simpler form.

Brumberg (1961) chooses to cperate in the orbital coordinate system

(the axis Ox points towards the instantaneous position). He is as la-

conic as Myachin about the way he derives a fundamental set of solutions

to the variational equations in this moving frame of reference. Charnyi

(1963) made a first attempt at clarifying this issue; lately he has come

with a rule to construct a fundamental set of solutions to the adjoint

variational equations for a conservative Hamiltonian system with n degrees

of freedom when (n-l) independent integrals are known (Charnyi 1965).

The author is apparently unaware of the relation between his method and

Jacobi's dual theorem of the last multiplier.

To conclude, in treating the variational equations of the problem of

two bodies, it is felt that a constructive and systematic approach is needed

which would permit an easy transformation from one frame of reference to

another and would also facilitate a proper choice of elements under different

circumstances.

In order to have a more organized view and to facilitate the search

for new forms of the matrizant, an application of Jacobi's dual theorem of

the last multiplier is made to the solution of the adjoint variational equa-

tions in an arbitrarily given inertial coordinate system. This method per-

mits the formation of the matrizant in a straightforward manner, and its

transformation to any other coordinate system such as the orbital frame cen-

sidered by Brumberg or the intrinsic frame postulated by Hill's equation.
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Only the two-dimensional problem of two bodies is examined in this

paper. Moreover we make quite apparent the places where the treatment we

present exclude successively the rectilinear solutions, then the circular

motions and finally the parabolic orbits. These restrictions do not come

from the introduction of a new independent variable such as the eccentric

anomaly and its relation to the time by means of Kepler's equation; rather

they follow from the conditions under which the three variational integrals

are independent ond the fourth solution associated with the last multiplier

is independent fro:,, the gradients of the variational integrals.

A special effort is made to keep the matrizants in the form most suit-

able to repeated processing by electronic computers. As far as possible we

eschew introducing transcendental functions; the time is kept as the running

variable along the orbit so that there is no need for solving Kepler's equa-

tion. We hope that formulas of this kind would prove to be elementary enough

to fit into an airborne computer, when they are extended to the three dimen'

sional problem.

1. Jacobi's theorem of the last multiplier applied to the variational equa-

tions.

As it is usually done, we use the conservation of linear momentum to

reduce the problem of two bodies to a dynamical system described by the

Hamiltonian function

N (X2 + y2)
r

in a four dimensional phase space product of the Cartesian olane of con-

figurations (x,y) by the Cartesian plane of moments (X,Y). In the func-

tion (I), u is a strictly positive real constant and

1.
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r =Ix 2 + y 2 1!2(2r + (2)

The Hamiltonian equations generated from (1) will be called orbital. They

admit four integrals:

(i) the energy

H =1 ( 2 u (3)

(ii) the angular momentum

G = xY - yX; (4)

(iii) Laplace's vector given by its Cartesisn components

xy - i- (5)
r

Q = - GX - WY (6)
r

The functions (3)-(6) will be termed orbital integrals. We agree to denote

by the same symbol either the function which is an integral or the constant

value which this function takes along a particular solution of the orbital

equations; no confusion could result from this ambiguity in the notations.

We recall an essential formula relating the four orbital integrals,

namely
p2 + Q 2 + 2HG2  (7)

and we set up a list of basic identities

Px + Qy = ,- 2

Py - Ox = Gr?, (8)

PX + QY =

PY - Ox = (;(V2 
- 1r



which we shall use quite often in the following sections of this paper

without explicitly referring the reader to them.

Let

r: t - (x(t), y(t), x(t), Y(t)) (9)

be a solution of the orbital equations. By definition a displacement or

variation of " is ony solution u (u,w,U,W) of the so-called varia-

tional equations

U U3 u3 + 3 - w] (10)

considered along the orbit 1'.

The variational equations are Hamiltonian: they are generated from the

Hami]tonian function

(U+ W 3) u -A-u + (3Y± 2],
2 2 r -- 1( r+r 2uw r 2,' (11)

which, as it is expected, is a quadratic form in the vector u whose coef-

ficients are functions of the time to be computed along the orbit (9).

Each orbital integral F generates an integral 6F of the variational

equations, which we shall call here a variational integral. It is to be built

as the scalar product 6F = (XIVF) of the vector e by the gradient

VF = (Fx, Fy FX, Fy) of the function F in the phase space (x, y, X, Y).
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Let us compute the gradients VG, VP and VQ of the orbital inte-

grals (4), (5) and (6):

2

xQx XY + 3

r 3  rGy= -X, P = -XY + Al Qy = X2  x2
= y 3 r3

(12)

G = -y, Px = -yY Qx = 2yX- xY
xx

Cy x, Py = 2xY - yXy = -xX.

We shall now build the six-dimensional 2-vector VP A VQ which is the ex-

terior product of the vector

VP = PxI +e e + P e +P
x-91 y 2  X Z3 + Y --4

by the vector

VQ = Qx + Qy 2 + QX 3 + QY X"

The components of the result written as the sum

VP A VQ = .
(i")

are found to be

A =-M, A ~ G(XY -2 312 r 23

13 2 A 2 4  _G(2- 21 2 (13)

Ar A2 -2G2
14 in hrc 3) 3

in the same manner we construct the exterior products
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VG A VP = Bij ei A t

VG A VQ = i j  A

whose components are as follows:

B12  -j 3 C12  -G -3
r r
3 2

13 _ 3 C13 3-GY + 3 3

r r
2 2

B GY + XC
14 3 1 4  3

2 r r 2 (14)
B 2 Y 3y = GX - P x__y

23  C23 3
r r

2 3
B GX x L
24 3 24 =  3

r r

B 34 - -Gy C34  Gx.

The following two properties are equivalent:

a) The gradients VP, VQ anJ VG are linearly independent;

b) The Keplerian "9tion r is not rectilinear.

Indeed let us build the four-dimensional 3-vector

VG^VP^VQ= Dij %
(i,jk) ijk Xi A A Lk

Its coefficients are as follows

D12 -) _G 2 _yL D G 2 Y

3 134
r (15)

D124 G 234 -- X.
r
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But he gradients VP, VQ and VG are linearly dependent if and only if

the 3-vector VG A VP A VQ vanishes identically. As it is exhibited by

the components Dijk found in (15), this is the case if and only if the

angular momentum G is zero, thus if and only if the Keplerian motion is

rectilinear.

From now on in this paper, we shall assume that G is a nonvanishing

constant; provided the plane (x,y) of configurations is given the good

orientation, we can even assume that G is strictly positive.

Since G is # 0, the fundamental identity (7) implies that

VH 2H VG + VP + - VQ (16)
G G

which means that the gradient VH of the orbital energy belongs to the three-

dimensional vector subspace generated by the gradients VG, VP and VQ. Con-

sequently, the orbital integrals produce only three linearly independent in-

tegrals, namely the functions:

6G = (VG) = Gxu + Gy w + GxU + GyW,

6P = (II7P) = Pxu + P w + P U + PyWS (17)x y 'x~ PY,(7
6Q = (UIVQ) = Q U + Q w +yW.

Qx y QXU+QW

Now, because they are Hamiltonian, the variational equations have a

multiplier, which is equal to 1. Accordingly, in view of Jacobi's theorem

of the last multiplier, the variational equations are to be solved by quad-

ratures only.
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2. Resolution of the adjoint variational equations.

In this paragraph we set ourselves upon the task of bringing out the

quadratures upon which hinges the solution of the variational equations.

3= - - x - U* + 3 W j* u*P
rr r

(17)

U* =+--3-YU* +1- W* W* --w*.

Like the variational equations, the adjoint variational equations are Hamil-

tonian; indeed they are generated by the Hamiltonian function

*' =- j 32- U + 6-W 2 3 - W +.I(u*+w 2) (18)
r r r r

Notice how one can go from the variational system (10) to its adjoint by the

completely canonical mapping

u = U, w = W, U-u , W - w. (19)

This is a nontrivial example of the law of exchange between coordinates and

momenta in a phase space.

As it is well known, any orbital integral gives rise by means of its

gradient to a solution of the adjoint variational equations. Thus, in view

of the proposition we proved in the preceding paragraph, the gradients VG,

VP, VQ constitute three linearly independent solutions of the equations (17).

Now we refer ourselves to the dual of Jacobi's theorem of the last multlplier:

the adjoint equations (17) having a multiplier (which is equal to 1), once we

I.Q
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know three independent solutions, we must be able to produce the general

solution by means of quadratures only.

To this effect let us introduce four unknown functions a,6,y,6 of the

time under the provision that the linear combinations

u = aG + 8P + yQ

w , aGy + BPy + y,

* (20)
U = aGx + BPx + YQx + 6D

w = Gy + 6Py + y

make a solution of the adjoint variational equations (17). On substituting

the expressions (20) into the equations (1'), we find that the unknowns

a,B,y and 6 ought to be solutions of the differential system

&G + ZP +'"Q = -- K( 3 2 - 1)6 (21a)x x x r j 3 r 2

&G + Py + iQ - 3-a11- 6, (21b)
y y~ r3 r2

&G X + AP x + :Qx + j O , (21c)

&Gy +BP + Qy =0. (21d)

In order to solve it, we begin by using the equations (21a) and (21b) to ex-

press and j by means of & and 6, so that

A12  = [3- Q x- (3 1Qy6 - C12&, (22a)

A1 2 " 32 P + (3 - 1) Py] 6 + B (22b)
r [r



we bring these expressions into the equation (21d) to express & in terms

of 6, which gives the relation

D [3 A)32L- A (22c)

But we observe that

2 2 r 3
3 I A -(3 -- 1)A G2 -I d 31j]2 14 2 J24 r3dt x/ I

so that (22c) becomes

Gr 3 t( x 3p(2a

We then substitute (23a) into (22a) and (22b) to obtain the relations

2
= 2ix 6 (23b)

On replacing &,Band " in (21c) by their expressions as given by the

relations (23), we transform (21c) into the differential equation

23

A124 -- (342- - 1 )(A23D12-A24 D,2 + 341 (A1 D 2-A3D 124)
1 rr

But from the definitions (13) and (15), we compute that

I24-24D123 3 - ,

r

AD124 6=-~ D~ (A4 l' AD -AD+3 2  (AD AD

14D]23 1324 24 3

r



-12-

Accordingly the linear differential equations which define 6 take the

following simple form

d x

r r

it is immediately integrable by quadrature to give that

3
6= K1G r (24a)

x

K! being an arbitrary constant of integration. When we substitute this ex-

pression of 6 into the equations (23) and perform the quadratures as indi-

cated, we obtain that

I 3
-XK1  

3 1t (24b)

= K3 +1K1 K fxdr, (24c)

2K4 +K 1 fdt + K- -1 x (24d)

This concludes the task we assigned to ourselves in this paragraph: in con-

formity with the dual of Jacobi's theorem of the last multiplier, solving

the adjoint variational equations (17) reduces to performing the quadratures

indicated in (24c) and (24d).

3. The quadratures required to solve the adjoint variational equations.

By going back to the first two identities (8), we immediately derive

that fxdt = 21 2 [(GPt- Qr2)- P frdt]

P +Q r(25)

fy dt = ;Qt Pr) - 1IQ dt]
P 2+ Q z '-
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provided of course that P2 + Q 2 0, which is the case if and only if

the Keplerian motion (9) is not circular. This will be our assumption in

the present paragraph. In view of (25), the problem is now reduced to

constructing a primitive of r.

Let us begin by observing that

2dt -- t r d 16

or else, in view of the equation for the radial motion

G
2

r 3 (26)
r r

that
2

2frdt + G 2f d if t (27)
r r r

But Charnyl (1963) has shown how the two primitives contained in the right

member of (27) are to be constructed.

For convenience we put

f d n  (n >0). (28)

n  .

On dividing the orbital integral of energy written in the form

H = ( +e ) R (29)

2 .2
first by i and then by r r, we find that

2HI 0 + 2I 1 - G21 2 = (30a)

2HI I + 21l12 - G2 1  = fdt (30b)

1
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.2
In the same way, on dividing the equation (26) first by i and then by

2 /r, we obtain that

G _G2 1 f f dr, (30c)
1 12 .2

r

;112 - G13 - L dt. (30d)
r

However, on account of (26), an integration by parts yields immediately that

=ri j(r2 - )dt,

whence, by recourse to the integral (29), we establish that

rs= (ri -2Ht); (31a)
Jr

this exhibits the right member of (30b) in a closed form. On the other hand

we observe that

= 1
dtr .2

r

wherefrom, by quadrature, we arrive at the primitive

dt = t r (31b)
r

this produces the right member of (30c) in a closed form. Eventually, because

dt t.2'

we find that

d t (31c)
f r

and so we exhibit the right member of (30d) in a closed form. To conclude:



-15-

in order to construct tie primitives I 0  and I1  requested by (27), all

we have to do is to solve the linear system (30) in the unknowns I (n = 0,1,2,3),n

provided we use the primitives (31).

We use the equations (30c) and(30d) to express I and I as functions1 3

of 12; then we substitute the results into (30b) and we find that

ir - G2

12 - (32a)
2 (P 2+Q 2)ri

Thereafter we go back to the equation (30c) to obtain that

G1- ( , (32b)

on substituting (32a) and (32b) into (30a), we find that

I0 = 3 - --Lr[ 2 r + ---- (i - (32c)

At this point, in order to divide both sides of (32c) by H, we have to

exclude the parabolic motions, which we shall do for the remainder of this

paragraph and the next one.

Let us replace 10 and I in (27) by their expressions as given by

(32b) and (32c). After some cumbersome but elementary transformations, we

finally find that

fr dt = (G2 + iir) - + (33)
41Hto 1 (33)

It follows therefrom by the relations (25) tha'
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2

ci dt = LP r Pi( ir + GJ.+ 2HGQr (34a)
4H411(P 2+ Q)2)

Iy cit =04irQ(ur+ G 2) - 2HGPr(3b
411 ~ 4H(P 2+ Q 2)

After a few more manipulations we arrive at a simpler form for these primitives:

fx cit = 3pt + 1$j(Xr 2 - Gy), (35a)

fy cit = ' + T,(Yr 2 + Gx). (35b)

It should be said that we obtain the right side of (35a) by omitting the

constant QG 3 /41I(P 2+Q 2) from the right side of (3 4 a), and the right side

of (35b) by likewis--e omitting the constan': -PG 3/4H(P 2+Q 2) from the right

side of (34b).

To our knowledge, the formulas (33) , (35a) and ( 35b) appear to be new

in the lite-ature of the problem of two bodies.

4. General solution of the variational equations.

Before we compute the general solution of the variational equations for

an elliptic or an hyperbolic motion, let us take the partial derivatives of

the basic identity (7) so that

PP + QQ = G (4.G--+2HY) ,
x x3

r

Pp + QQ = G(uG Y - 2HX),

r (36)

ppX + QQX G( Gx -211y),

PI\ + Q(Y=G( Gy + 211x).



-17-

In view of these formulas we draw trom the quadratures (35) that

Pkc dt + QJy dt = 3t G -2L + 2HY - 2Hy - GX

Pf dt. = QGf [t it (G-y- - 21X) + 2Hx - GY]
xr (37

P xJ.x dt + Q fy dt =.Qi[3 t(G - 2Hy) 2G 2 x
x 4H

P~f dt + QYJ Y dt = G [Ft (GY + 2Hx) 2G 2 y

We are now ready to substitute the functions a, a, y, 6 given by the

formulae (24) into the linear combinations (20). A few trivial manipulations

yield the final resulL:

u K (X - 3 ) + K2G + K3P + KQ,
r

v = Kj(Y - 3-3 t) + K2Gy + K3Py + K4 Qy,

r (38)

U = , -' _ 3Xt) +KG + K3PX + K4QXV

V = K'(2y - 3Yt) + K2GY + K3P +K 4QY ,

it being understood that the arbitrary constant K1  of integration is now

replaced by a constant K such that 2HK= -GK 1 •

We find it convenient to define the vector

S = SeA + S2A + $3 3 + $4

whose components are

LA
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S= X - 31t X t, S3 = 2x - 3t,3 3
r

S= Y - 3P _- t, S4 - 2y - 3Yt.S2 34
r

We just proved that S is a solution of the adjoint variational equations

(17).

Let us compute the one-dimensional 4-vector S A VG A VP A VQ; we find

that S AVG A 7P A VQ = -2HG 2 ei ^
2 A 3 A.S4 .

This proves that the matrix

A (t) = (a (t))
ij

whose columns are the vectors S, VG, VP, VQ taken in that order has its

2
determinant equal to -2HG ; it thus constitutes a fundamental set of solu-

tions to the adjoint variational equations.

In order to compute the inverse B (t) of A (t), we compute the fol-

lowing 3-vectors:

S AVG A VP = 1 Ejk -A j AXk'
(ij,k)

S AVP A VQ Fijk E A e A Zk
(iJk)

~~AVPAVQ (i,j ,k) Jj~Aj~

the components are

E l23  (Yr2 + Gx + 3Qt)
123 3

r

IIi
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El24 =-ii- (Yr2 + Gx + 3Qt) - 2HG,

r

E1 34  -Y (Yr2 + Gx + 3Qr) + 2Hy
2,

E234= X (Yr2 + Gx + 3Qt) - 2Hxy,

F12 =- (Xr - Gy + 3Pt) + 2HG,
r

F1 24 = 3 (Xr - Gy + 3Pt),
r

F134 = Y (Xr - Gy + 3Pt) - 2Hxy,

F =2 _2
234 - X (Xr -Gy + 3P) + 2Hx

3 2HG (Y - 3vt3 )
123 3

r

J124 = -2HG (X - 3-' ),

r

J134 = -2Mr (2y - 3Yt),

J234 = 2HG (2x - 3Xt).

But, as we know from Linear Algebra, these 3-vectors and the one we computed

in (17) yield the elements bij of the inverse matrix B from the following

relations:

2* 2*
-2HG. b 1= D 234 b21 ' -J234'

2* 2*-2HG. b = -D 134, -2G. b)2 = J
12 134'134'

2* 2
-2HG. b = D 2 4 , -2G. b23 = 124'

2 * I *
-211G. b 14 V12 3 " -2HG b 24 j113



-20-

2 *
-2HG. = F -2HG.

32  , -21. b4 2 = E1 34,

2* _2* 4 E2

-211G b3 3 = F1 , -2G. b

-2HG. b 3 4 = -F 1 2 3  -2HG. = El2 3.

The matrix A (t) being a fundamental set of solutions to the equations

(17), the matrix

R (t;t 0) = A (t)o B (t0 ) (39)

is also such a set. But obviously

R (to;t 0) = A(t 0)o B(t o) = 14

Hence R (t;t 0) is the resolvent of the adjoint variational equations.

Now, in view of (19), the canonical matrix

0_ 0 01
0 00
-(01 00

is such that the vector

u = J.u

is a variation (i.e. a solution of the equations (10)) if and only if the

vector u is an adjoint variation. Therefore the matrix

R(t;t 0) JOR (t;t O ) OJ (40)

is the resolvent of the variational equations. A simple expression of

R(t;t O) is obtained by putting
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A(t) = JoA (t), (41a)

B(t) = B*(t)oJ- (41b)

so that

R(t;t 0) = A(t)oB(t 0). (42)

The elements of the matrices A(t) and B(t) are presented in Tables I and II.

Table I -The factor A~t) of the matrizant R(c,t 0

a 2x - Xt a 12  -Y

a 21 ~ 2y -3Yt a22= x

a31 -X + 3,x~t 32 1-x

41 3-+~-~ a42  X
r

a 1 3  _yY 14 inxY + 2yX

*a23  -yX + 2Y a24 =-xX

2 2
a3 = -Y +vYZa x

r r

a43  3 a4 4  3
r r
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Table II - The factor B(t) of the matrizant R(t;t0)

b_ _ b = _
11 2H 3 12 2H 3

r r

1 X(b2 1 =-(-X + 31b-Y 3b 1)
21 G 0t22 G 3ix~t

r r

W x 2 Y (X y P
31 2HG03 -Gy+3Pt)32 = - -Gy+3Pt) +

r 2HG r

D (Yr 2 +Gx+3Qt) b - -y- (Yr 2 + Gx + 3Qt)
41 2HG r3 G 42 2HG2 r3

X Y
b1 3  2H b14  -2H

b = (2x- 3Xt) b24 = (2y -3Yt)
23 G 24 -

2

'b ~(Xr 2 -Gy + 3Pt)+ b -Y (Xr2  Gy + 3Pt)+
233 G2HG2 G 2HG2 2

2

X (Yr 2 + Gx + 3Qt) + b (Yr 2 + Gx + 3Qt) +
43 2HG 2  G2  44 2H2 G2

5. The matrizant in the orbital frame of reference.

The resolvent (42) is related to inertial Cartesian frames of reference

in the original space: given a displacement ='(AxO 'AY0' Ako0' AO )  of the

initial position (xoY O) and of the initial velocity (i0, O) with respect

to that fixed frame, it provides in the linear approximation the evolution

A(t) =(Ax(t), Ay(t), AA(t), A (t)) of that displacement along the orbit r,

namely

A(t) - R(t;t 0 ).AO"
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But there are other frames of reference, not fixed in space, to which

it is sometimes more convenient in practice to refer the Keplerian orbit.

In this paragraph, we shall consider the orbital frame of reference: the origin

0 is the center of attraction, the axis Ox' is the line from 0 to the posi-

tion occupied by the particle, and the axis Oy' is taken orthogonally to the

axis Ox' and 90 forward of the axis Ox' in the sense of the motion of

the particle on its orbit.

If 6 is the azimuth of the particle in the inertial frame of reference,

such that

x = r cos, y r sin 6, (43)

then its Cartesian coordinates in the orbital frame Ox'y' are

x' = r, y O,

and the Cartesian components in the frame Ox'y' of its velocity with respect

to the frame Oxy are

X =r, Y' = r G (44)r

Let (u', w', U', W') be the components in the frame Ox'y' of the displace-

ment u in the frame Oxy; obviously

uW U1 cos 0 + sin u,

w = -ul sin 6 + w' cos e, (45)

U = U' cos 8 + W' sin 8,

W = -U' sin 0 + W' cos 0.

Thus the components u', w', U', W' of the displacement can be interpreted

as follows:
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(i) u' is the correction in radial position or range;

(ii) w' the correction in transversal position;

(iii) U' the correction in radial velocity or range rate;

(iv) W' the correction in transversal velocity.

Notice that the relations (45) define a time-dependent canonical tranformation;

it can be taken as being generated by the function

S' S'(U,W,u',w') = -U(u' cos 0 + w' sin 0) - W(-u' sin 0 + w' cos 0)

so that its remainder is the function

as ' - (uW - wU)O = -G(uW - wU)8. (46)at

The transformed variational Hamiltonian is the function

a'

Since the transformation (45) is a proper rotation in the plane of configu-

rations and in the plane of moments, we have immediately that

U2 + W2 = U'2 + W'2  (48a)

uW - wU = u'W' - w'U'; (48b)

we also compute that

3x2 - 1) u + 6xy 2+ - = 2u' - (48c)
r ~ r r

This last expression is interesting in that it exhibits that the orbital axes

Ox' and Oy' are the principal axes of that quadratic form which is the

force function in the variational Hamiltonian OV. Thus, mathematically
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speaking, the orbital axes Ox' and Oy' are introduced to diagonalize

partially the variational Hamiltonian.

On introducing (48a), (48b) and (48c) into (11) and (46), we eventually

obtain from (47) that

2 22

AV' = (U' 2+W'2 ) - (u'W-w'U') - -r- (2u'-w'2) (49)r 2r3

The variational equations derived from ' are

' 'U' 2' 2 W 2u3
r r r

(50)
SW' Gu' " w G 21 3

r r 2 2r 3

in their Hamiltonian form, or

G G2+ur u' + r O

U 2 w 4 u+ 2-:3 w
r r r

(51)

V, + 2- u 2Gr u' G2-0r
2 3 4

r r r

in their Lagrangian form. These are the equations which Brumberg (1961) and

Charnyi (1964) considered in preference to the equations (10).

We are able to construct in a direct way the matrizant R'(t;t 0) of

the system (50). Let us put

Cos 0 sin 0 0 0 cos e -sin 0 0 0

-sin 6 cos O 0 0 sin O cos O 0 0
K' ( 0 0 cos 0 sin el' L' = ( cosO -sin 0

0 0 -sin 0 cos 0 0 0 sin Cosa
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because

W= K' w= L1 w
U UU' U

W WO Wt W

we have that

R'(t;to) = K'oR(t;t0 )oL'.

This suggests introducing the matrices

A'(t) = K'oA(t), B'(t) = B(t)OL ' , (52)

so that the matrizant is decomposed into the product

R'(t;t0 ) = A'(t)oB'(t 0 ). (53)

Tables III and IV present the elements of the factor matrices A'(t) and

B'(t) which compose the matrizant of the elliptic and hyperbolic Keplerian

motions (G # 0, e $ 0,I) in the orbital frame of reference.

Table III - The factor A'(t) of the matrizant R'(t,t O)

2r - 3t 12

a2 -3-t a22 = r
rr

a G
a31 a32 r

ar 42

a13 r i24 - r

a23 Y r a4 G-K
r r

x

43 r44 '
r r

y ,

a' 0 a =0
3 3 . .. . . .r.. . . .3 4.. . . . . .r.
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Table IV - The factor B'(t) in the matrizant R'(t;t 0)

b 1--- b =0
1l 2Hr2 12

1f (i -3- r u 0 1'21 0 2 22 r
r

b 2 I 1 (Xr2 - Gy + 3Pt) +-v b 3 X2HG2r2 Gr 32 Gr

b' = - (Yr 2 + Gx + 3Qt) -x b y
41 2HG 2 r 

2  Gr 42 Gr

bt i b G

13 2H 14 - 2Hr

b3 = (2r - 3it) 3'
230 24 r

r 2 rx 1 22, (Xr - Gy + 3P) + L -(Xr-0y+3Pt)
3 32G2 G 2 ;4 2HGr

i 2 :1 2
b Yr + Gx + 3Qt) + b i 2

2H G2 44 -j (Yr +Gx+3Qt)

QA

. . . . . . . . . . . . . . . . . . . . . . . . .
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6. Hill's equation for the problem of two bodies.

Because we restrict ourselves to elliptic and hyperbolic mctions,

nowhere along the orbit does the velocity vanish. Hence we define without

ambiguity an angle 0 such that

X a V cos, Y V sino; (54)

0 is the angle which the velocity vector makes with the inertial axis Ox.

From the definition (54), we immediately draw that

xk + Yi - v, xi + yri= vi- v 2 ;2 ,
(55)

x4 - k v2 , Xi - Y = 2V + v2.

Now let us for a moment consider a more general dynamic system described

by the Hamiltonian function

'W=- (X2 + Y2 ) -O#Nx,y). (56)

On using the differential equations of motion derived from (56) as well as

the identities (55), we obtain that

a x cos 0 +Qt sin* - VP

(57)
sin 0 -(W cos * -

y

Cos + cs cossin + y sin

2(Cos2 sin2 + Oy ) cos b sin ,2- +
(xy yy xx

(Wx sin 2 *~Oycos. sin +Qy Cos 2 in +t (# +;
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We transform the displacement (u,w,U,W) in the following way:

u - u" cos 4 - w" sin 4, U = U" cos 4 - W" sin 4,
(58)

w = u" sin 4 + w" cos , W = U" sin 4 + W" cos 4.

The components u", w", U", W" of the displacement can be interpreted as

follows:

(i) u" is the tangential variation or the variation along
the track;

(ii) w", the normal variation, or the variation across the track;

(iii) U", the correction in tangential velocity;

(iv) W", the correction in normal velocity.

The relations (58) define a time-dependent canonical transformation; it can

be considered as being generated by the function

S to ="(UW'u",w") = -U(u"cos 4 + w"sin O)-W(-u"sin 4 + w"cos 4)

so that its remainder is the function

a" - -(uW - wu)$.

But the variational Hamiltonian associated with (56) is the function

V (U2 + W2 ) - (%u 2 r 2 yuv +tv 2)

which, in virtue of the canonical transformation (58), transforms into the

function

'V o V"(u" ,w" ,U",W") . 'V +

In view of the transformation relations (58) and of r'. identities (57),

we readily obtain that
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Vol (U'"2 + W"2 )-_$(u" w - w"u")

FR, *2\,,2 (V ~ It to ++2 v\2- ) U lu + 2(2- $ + cyu w + $2 ,, 1] 9

From the Hamiltonian equations

all U" + $w",

*0" W W"i - ;u"f

I M iw" + ;2 u" + ( w t (60)

WI'= ~'+ 4;+ u"+ ( +s %Yt + ;2 wi

we deduce the Lagrangian equation for the normal variations

i"+ 2 'i" _ x 2 i(V' 1  V611). (61)

But the variational integral of energy

6H - XU + YV - M u -0 v
x y

becomes in the intrinsic variations the function

6H - VU"-" - - V" (62)

or, on using the second of the equations (60),

6H - (Vi" - Vu") - 2V w" (63)

Therefore the Lagrangian equation (61) transforms into the second order

linear differential equation:

i" + ow" -2A.6H (64)V
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whose coefficient is the function

V=-+24 -Ox -O+ 2. (65)

V xx yy

To conclude, the resolution of the Hamiltonian system (60) reduces to the

integration of a second order differential equation in the normal displace-

ment w and the quadrature

d = -6H + 24" (66)

as indicated by the variational integral (63) for the tangential displacement.

We now. return to the problem of two bodies. In this case, in view of

the identities (55) and of the orbital equations of motion, we find that

Vr2  Vr 3

v [ ~.2i 2 _ G 2(v2~

O2XX +Q)yy r

Accordingly, the coefficient (65) in Hill's equation (64) is the function

P V 2- V 2k _ R)] (67)V 2

which can also be written as

pV [V2 + 3G(

to provide a better indication of its physical meaning.
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7. The matrizant in the intrinsic frame of reference.

In the same way as we did in the orbital frame of reference, we decom-

pose the matrizant R"(t;t0 ) in the intrinsic frame of reference into the

product

R"(t;t0 ) A"(t) B"(t0)

with

A"(t) K'oA(t), B"(t) B(t)oL",

( cos 0 sin 0 0 0O/ cos sin 0 0

Kt' L"

--sinp 0 Cos 0 0 0 / L= -sin~ Cos 0 0 )
0 0 cos 1 sin ) 0 0 cos sin;

0 0 -sin cos 0 0 -sin cos

The elements of the matrices A"(t) and B"(L) are listed in Tables V and VI.

We denote by a" the vector whose componen:s are the elements of the

th
i column in the matrix A(tQ. For I < i < 4, the vector a" is a solu-a-I

tion of the variational equations. Let us compute the value taken by the

variational integral of energy along that variation; we find that

V~ -2H, and (VHal) 0 (2 < j < 4). (68)

Variations x such that (VHIu) - 0 are called isoenergetic. Thus what the

equalities (68) prove is that the isoenergetic variations constitute a three-

dimensional space, and that the variations a" (j = 2,3,4) form a base of

that vector subspace.

If
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Table V - The factor B"(t) in the matrizant R"(t;t0)

all =2L--a 12 -

a, f G ,, _ ria 21 -2 a 22 =V

al = -V - 3Vt al = 0

31 32

-" = - 3V~t all w Va41 a42

a13 = 20 14 =-2GV

a = (2GX + V 2y) a -2GY V2x)~23 a 24

all =- vy" vxa33 a34

= VY + y" -VX - x
43 44

%a

.. . . . . . . . .. . . . . . . .
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Table VI -The factor B"(t in the matrizant R"(t;t 0)

2b" b" '
11 2H12 211

21 3 22 3Gt

b, V(r2Gy + 3Pt) +Y b" O(X Gy + 3PO + GX

31 -"-G(2 GV 32 2HG2

b" v X x+3t bol =- (Yr 2 + Gx +3Qt) + G
41 2 GV 42 2

b - b" 0o
13 2H1 14

b"t b 3t
23 V 3Gt 24 V

b" (Xr .Gy +3Pt) +-- 34r G
3321G 2VG 4 G

-o V 2Y + Gx+ 3Qr) + Y b" -y-.
43 21G2G 2 44 GV
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Fozemost among the isoenergetic variations is the solution

- (u0 ,w0,U0,Wo) such that

u=X, w0 = Y, U0 MX, V0 =Y;

its components in the intrinsic frame of reference are

It -- v, It = o, U , w1 = -Vi (70)

The reader could check that this remarkable isoenergetic displacement is the

linear combination

=a all+ a f i

0O-2 AO~ YA

whose coefficients are the functions

2 - x

o - -- + -
0 G 2  r G VGO

2- + VG "

One usually completes the base of the vector subspace of isoenergetic vari-

ations by adjoining to the vector (70) the solutions xi and x defined

by the following initial conditions:

u =t 0, wi =(t 1, W(t 0 ) ,

(71)
u (t o ) 0, we(t 0) - 0, (t 0 ) -.

The variation x, results from displacing the initial position along the

normal to the orbit at that point without modifying the velocity, while the
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variation X2 is caused by an initial change of the normal component of

the velocity (or for that matter an initial impulse in the normal direction)

without changing the initial position. To make such displacements isoenergetic,

we adjust the change in the tangential component of the velocity according to

the variational integral of energy (63) in which we put 6H = 0. There re-

suits that

"(t(t) = 0. (72)

Since we assume that they are isoenergetic, the variations a, and x2 are

linear combinations of the kind

-2 Al' + 6243 +

They satisfy the initial conditions (71) if and only if

V0V 0 x -V A 0 Y0 -
I o 2 GVo 2 Vo 2

V0 L 0 GV

2 x0 YO
a2  V 0  2 GV0 2 - GV 0

Accordingly their components are as follows

Ul =---[Gv + (VoXo-Voxo)Y - (VoYo-%Yo)X]

0

1 [26.ri + (V x (2GX+V ) + (VY-VY)(2GY-V2x)
I GV2 rr + (Vo-0000

0

o 2i [eViY 04%YOX - (V X 4 x
1 GV 0 20 0 0 0
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141 -- 26 zV + (V X0-Vx0)(VyY) - (V0Y0-V0Y0)(VX+x) (73)

0

for the basic isoenergetic displacement !!, and

U11 (G- Yx0 + Xy0 ),

2f V= 0 V V2 -G

W1, cvv[ - (V2y+2GX)x +(V x-2YyO,
2 GV v (74)

2 0G(yx0 -y 0)

W11 12GV - (VY+Vy)x0 + (VX+vx)y]

for the other basic isoenergetic displacement AV
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Conclusion

The variational equations of the problem of two bodies have been solved

from first principles applying Jacobi's dual theorem of the last multiplier

to the adjoint of the Hamiltonian system expressed in Cartesian coordinates

with respect to an arbitrarily given inertial frame of reference. Once the

matrizant R(t;t O) in that system has been obtained in closed form, other
0I

forms of the resolvent are derived simply by homogeneous canonical extensions.

By way of illustration, we have recovered in this way the matrizants in the

orbital frame of reference and in Hill's intrinsic coordinate system. To

our knowledge this last resolvent is not to be found elsewhere in the litera-

ture on the problem of two bodies.

The treatment we give in this paper is incomplete in many respects. For

instance some who deal with orbital transfers or trajectory designs by matching

conics would like to introduce a so-called universal variable which, for

Keplerian motions as functions of the eccentricity e, acts as a locally

uniformizing variable (Sconzo 1967) in the neighborhood of e = 1. Goodyear

(1965) has been the first to introduce a universal time variable in the matri-

zant of the proble-. of two bodies; he did it as an extension of the method

proposed by Stumpff (1947, 1959, 1962) for the orbital equations. At this

point, the problem is to find a w.y of simplifying the lengthy and, at places,

cumbersome manipulations performed by Goodyear (1966).

I..
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